专业详解:大数据采集与管理专业

发布于2021-03-20 11:41:59——张维锋

随着互联网时代的发展和驱动,越来越多的企业进行信息整合,将公司的运营业务做成数据进行系统开发和整理,进而更方便的发现运营和市场的变化,大数据相关行业的人才也发生了很大变化,诸多院校也陆续开设大数据采集与管理专业,那么大数据采集与管理专业到底是什么专业,学习什么,将来做什么,下面求学宝给大家进行详解。
u=2869432729,3932303217&fm=26&gp=0.jpg     

 专业介绍:
      大数据采集与管理专业是从大数据应用的数据管理、系统开发、海量数据分析与挖掘等层面系统地帮助企业掌握大数据应用中的各种典型问题的解决办法的专业。

     “大数据”能帮助企业找到一个个难题的答案,给企业带来前所未有的商业价值与机会。大数据同时也给企业的IT系统提出了巨大的挑战。通过不同行业的“大数据”应用状况,我们能够看到企业如何使用大数据和云计算技术,解决他们的难题,灵活、快速、高效地响应瞬息万变的市场需求。

      主要课程:
      大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Mapreduce的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。

      专业技术:
      (1)大数据与Hadoop生态系统。详细介绍分析分布式文件系统HDFS、集群文件系统ClusterFS和NoSQL Database技术的原理与应用;分布式计算框架Mapreduce、分布式数据库HBase、分布式数据仓库Hive。
      (2)关系型数据库技术。详细介绍关系型数据库的原理,掌握典型企业级数据库的构建、管理、开发及应用。
      (3)分布式数据处理。详细介绍分析Map/Reduce计算模型和Hadoop Map/Reduce技术的原理与应用。
      (4)海量数据分析与数据挖掘。详细介绍数据挖掘技术、数据挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF数据挖掘算法–聚类算法;以及数据挖掘技术在行业中的具体应用。
      (5)物联网与大数据。详细介绍物联网中的大数据应用、遥感图像的自动解译、时间序列数据的查询、分析和挖掘。
      (6)文件系统(HDFS)。详细介绍HDFS部署,基于HDFS的高性能提供高吞吐量的数据访问。
      (7)NoSQL。详细介绍NoSQL非关系型数据库系统的原理、架构及典型应用。

      行业趋势:
      趋势一:数据的资源化

      何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。


      趋势二:与云计算的深度结合

      大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。


      趋势三:科学理论的突破

      随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。


      趋势四:数据科学和数据联盟的成立

      未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。


      趋势五:数据泄露泛滥

      未来几年数据泄露事件的增长率也许会达到100%,除非数据在其源头就能够得到安全保障。可以说,在未来,每个财富500强企业都会面临数据攻击,无论他们是否已经做好安全防范。而所有企业,无论规模大小,都需要重新审视今天的安全定义。在财富500强企业中,超过50%将会设置首席信息安全官这一职位。企业需要从新的角度来确保自身以及客户数据,所有数据在创建之初便需要获得安全保障,而并非在数据保存的最后一个环节,仅仅加强后者的安全措施已被证明于事无补。


      趋势六:数据管理成为核心竞争力
      数据管理成为核心竞争力,直接影响财务表现。当“数据资产是企业核心资产”的概念深入人心之后,企业对于数据管理便有了更清晰的界定,将数据管理作为企业核心竞争力,持续发展,战略性规划与运用数据资产,成为企业数据管理的核心。数据资产管理效率与主营业务收入增长率、销售收入增长率显著正相关;此外,对于具有互联网思维的企业而言,数据资产竞争力所占比重为36.8%,数据资产的管理效果将直接影响企业的财务表现。


      趋势七:数据质量是BI(商业智能)成功的关键

      采用自助式商业智能工具进行大数据处理的企业将会脱颖而出。其中要面临的一个挑战是,很多数据源会带来大量低质量数据。想要成功,企业需要理解原始数据与数据分析之间的差距,从而消除低质量数据并通过BI获得更佳决策。


      趋势八:数据生态系统复合化程度加强
      大数据的世界不只是一个单一的、巨大的计算机网络,而是一个由大量活动构件与多元参与者元素所构成的生态系统,终端设备提供商、基础设施提供商、网络服务提供商、网络接入服务提供商、数据服务使能者、数据服务提供商、触点服务、数据服务零售商等等一系列的参与者共同构建的生态系统。而今,这样一套数据生态系统的基本雏形已然形成,接下来的发展将趋向于系统内部角色的细分,也就是市场的细分;系统机制的调整,也就是商业模式的创新;系统结构的调整,也就是竞争环境的调整等等,从而使得数据生态系统复合化程度逐渐增强。


版权所有 © 1998-2021 沈阳易尚优学信息咨询有限公司 辽ICP备-16018895号
服务时间:周一至周六 08:30-17:00 节假日不休 统一客服热线:400-024-0688